

4-1 Geometric Sequences

Name Date

Learning goals:

- I can convert a sequence into a recursive or explicit formula.
- I can use a formula to find missing terms in a sequence.
- I can determine the common difference/ratio from a sequence.
- I can identify linear and exponential situations and distinguish between the two.
- I can construct a linear or exponential function from an arithmetic sequence, table of values or verbal description.

RECALL:

Arithmetic Sequences

Recursive:
$$\begin{cases} a_1 = \\ a_2 = a_2, \pm d \end{cases}$$

Explicit:
$$a_n = a_1 + (n-1)d$$

- 1. Continue the following sequences:

 - 4, 8, 12, 16, 20, 24, 28, ... d=4 -2, 10, 22, 34, 46, 58, 70, ... d= 12
 - c. 8,-15,-38, -61, -84, -107, -130,... (1=-23
 - 2.3, 5.7, 9.1, 12.5, 15.9, 19.3, 22.7 ... d=3.4
- Write a recursive and explicit rule for the sequence in part d. 2.

 $\begin{cases} a_1 = 2.3 \\ a_2 = a_{n-1} + 3.4 \end{cases}$

$$a_{n} = 2.3 + (n-1)(3.4)$$

In your own words, define an arithmetic sequence. 3.

Recursive:
$$\begin{cases} a_1 = \\ a_n = a_{n-1} \cdot r \end{cases}$$

Explicit:
$$a_n = a_1 r^{n-1}$$

A geometric sequence is a sequence in which each term after the first is found by multiplying the previous term by a constant. In any geometric sequence, the constant or common ratio is found by dividing any term by the previous term. The n^{th} term (a_n) of a geometric sequence with first term a_1 and constant ratio r is given by the formula $a_n = a_1 \cdot r^{n-1}$

Consider the sequence {4, 12, 36, 108, ...}

The explicit formula for this sequence is $a_n = 4 \cdot 3^{n-1}$

The recursive formula for this sequence is $\begin{cases} a_1 = 4 \\ a_n = g_{-1} \cdot 3 \end{cases}$

Determine which of the following sequences are geometric. If it is a geometric sequence, find A. the common ratio.

Example:
$$4, 20, 100, 500$$
 $7 = \frac{20}{4} = \frac{100}{20} = \frac{500}{100} = \frac$

1.
$$7, 14, 28, 56, \dots$$
 $\Gamma = \frac{14}{7} = \frac{28}{14} = \frac{28}{22}$

3.
$$3,9,27,54,...$$
 (= $\frac{9}{3} = \frac{27}{9} \neq \frac{54}{27} \Rightarrow \text{Not anithmetic}$
4. $9,6,4,\frac{8}{3}$ (= $\frac{6}{9} = \frac{4}{6} = \frac{8}{3} = \boxed{\frac{2}{3}}$

4.
$$9,6,4,\frac{8}{3}$$
 (= $\frac{6}{9}$ = $\frac{4}{6}$ = $\frac{8}{3}$ = $\boxed{\frac{3}{3}}$

В. Find the next two terms for each **geometric sequence**:

Example:
$$729, 243, 81, 27$$
 9 $7 = \frac{243}{729} = \frac{1}{3}$

1.
$$20, 30, 45, 67.5, 101.25 = 1.5$$

2.
$$90, 30, 10, \frac{10}{3}, \frac{10}{9}$$

3.
$$2,6,18,54,162$$
 $\Gamma=\frac{6}{2}=3$

Find the first four terms of each geometric sequence described below: C.

Example:
$$a_1 = \frac{3}{2}, r = 2$$

$$\frac{3}{2}, \frac{3}{4}, \frac{6}{4}, \frac{12}{4}$$
1. $a_1 = 3, r = -2$

1.
$$a_1 = 3, r = -2$$

3, -6, 12, -24

2.
$$a_1 = 12, r = \frac{1}{2}$$

12, 6, 3, 1.5

3.
$$a_1 = 27, r = -\frac{1}{3}$$

$$27, -9, 3, -1$$

Find the n^{th} term of each **geometric sequence** described below: D.

Example:
$$a_1 = 4, r = 5, n = 3$$
 $a_3 = 4.5^3 = 4.5^3 = 4.55 = (00)$

1.
$$a_1 = 4, r = 2, n = 3$$

 $a_3 = 4 \cdot \lambda^{3-1} = 4 \cdot \lambda^2 = 4 \cdot 4 = 16$

2.
$$a_1 = 2, r = 2, n = 5$$

 $a_5 = 2 \cdot 2^{5-1} = 2 \cdot 2^4 = 2 \cdot 16 = 32$

3.
$$a_1 = 32, r = -\frac{1}{2}, n = 6$$

Find the missing terms of the following geometric sequences: E.

E. Find the missing terms of the following geometric sequences:

Example:
$$3, 6, 12, 24, 48$$

$$3 \cdot 6 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48 = 48$$

$$48$$

· e				
		w.		
		*		